An Integrated Photoluminescence Sensing Platform Using a Single-Multi-Mode Fiber Coupler-Based Probe
نویسندگان
چکیده
We demonstrate an integrated fiber optic photoluminescence sensing platform using a novel single-multi-mode fiber coupler (SMFC)-based probe with high collection efficiency for fluorescence signals. The SMFC, prepared using fused biconical taper technology, not only transmits excitation light, but also collects and transmits fluorescence. The entire system does not use complex optical components and rarely requires optical alignment. The simple structure of the SMFC considerably improves the light transmission efficiency, signal-to-noise ratio, and sensitivity of the system. Theoretical and experimental results show that the proposed probe increases the collection efficiency by more than eight-fold compared with a bifurcated fiber probe. The performance of the proposed probe was experimentally evaluated by measuring the fluorescence spectra of well-known targets and a fresh Tall Fescue leaf.
منابع مشابه
Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap.
We demonstrate a multi-functional optical trap capable of trapping, motion control, position sensing and fluorescence detection of chemically treated polystyrene beads, using off-the-shelve optical components. It consists of two collinearly aligned single-mode fibers separated by a spacing of 130-170mum for trapping, another single-mode fiber for probing/pumping and a fourth multi-mode fiber fo...
متن کاملStructural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope.
The design of a multi-functional fiber-based Optical Coherence Tomography (OCT) system for human retinal imaging with < 2 micron axial resolution in tissue is described. A detailed noise characterization of two supercontinuum light sources with different pulse repetition rates is presented. The higher repetition rate and lower noise source is found to enable a sensitivity of 96 dB with 0.15 mW ...
متن کاملAn Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers
We have designed and fabricated an out-of-plane coupler for butt-coupling from fiber to compact planar waveguides. The coupler is based on a short second-order grating or photonic crystal, etched in a waveguide with a low-index oxide cladding. The coupler is optimized using mode expansion-based simulations. Simulations using a 2-D model show that up to 74% coupling efficiency between single-mod...
متن کاملUltrahigh-efficiency apodized grating coupler using fully etched photonic crystals.
We present an efficient method to design apodized grating couplers with Gaussian output profiles for efficient coupling between standard single mode fibers and silicon chips. An apodized grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform is designed, and fabricated in a single step of lithography and etching. An ultralow coupling loss of -1.74 dB (67%...
متن کاملDesigning a dual-core photonic crystal fiber coupler by means of microfluidic infiltration
We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2014